skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "FASER Collaboration, Ariga"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neutrinos from a particle collider have never been directly detected. FASER𝜈 at the Large Hadron Collider (LHC) is designed to detect such neutrinos for the first time and study their cross sections at TeV energies—at present, no such measurements are available at such high energies. In 2018, during LHC Run 2, we installed a pilot detector 480-m downstream of the ATLAS interaction point. In this pilot run, proton–proton collision data of 12.2 fb−1 at a center-of-mass energy of 13 TeV were collected. We observed the first candidate vertices, which were consistent with neutrino interactions. A 2.7𝜎 excess of neutrino-like signal above the background was measured. This milestone opens a new avenue for studying neutrinos at the existing and future high-energy colliders. During LHC Run 3, which will commence in 2022, we will deploy an emulsion detector with a target mass of 1.1 tons, coupled with the FASER magnetic spectrometer. This will yield ∼2,000 𝜈𝑒, ∼6,000 𝜈𝜇, and ∼40 𝜈𝜏 interactions in the detector. Herein, we present the status and plan of FASER𝜈 and report neutrino detection in the 2018 data. 
    more » « less